
History

How did the Python get it’s name?

•Got it’s name from a BBC comedy series “Monty Python’s

Flying Circus”.

Who developed the Python?

•Conceived in the late 1980, and it’s implementation began in

December 1989 by “Guido Van Rossum” at Centrum Wiskunde

& Informatica (CWI) in Netherlands.

• First released in 1991 and presently administered by Python

Software Foundation.

It is a successor to the ABC language with an extra features

like exception handling and extensibility

ABC :

•Is an imperative general purpose programming language

and programming environment developed at CWI.

•It is interactive, structured, high level and intended to be

used instead of BASIC, Pascal.

•It is not meant to be systems programming language but is

intended for teaching or prototyping

EX:

>>> print("Hello World!")

Hello World!

>>>quit() # to close the command prompt

>>>exit() # to close the command prompt

>>>Ctrl+z # then press enter to close command prompt

(i) Example USING COMMAND PROMPT

(ii).Go to the folder containing the shortcut or the installed

files and click on the Python command Line.

After double clicking on “idle” python file a Python Shell will be displayed for you with all

menu items like File, Edit, Shell, Debug, Options, Window, Help.

Now you select “New File” from “File” menu

2. In Script Mode

Some rules and certain symbols used with regard to statements in

Python:

•Hash mark(#) indicates comments

•New line(\n) is standard line separator

•Backslash(\) continues the line

•Semicolon(;) joins two statements on a line

•Colon(:) separates header line from it’s suite

•Statements are grouped as suite

•Suites are delimited via indentation

•Python file are organized as “modules”

• An identifiercan be a combination of uppercase letters, lowercase

letters, underscores, and digits (0-9).Ex:abc1_ or _abc1 .

• An identifier should not begin with a number.

⚫ Specialcharacters such as %, @, and $ are not allowed within

identifiers.

⚫ You cannot use Python keywords as identifiers.

⚫ Only Class identifiers begin with an uppercase letter

⚫ You can use underscores to separate multiple words in your

identifier.

Python Identifiers

Indentation

• Java, C, and C++ use braces to denote blocks of code.

⚫ Indentation, by convention, is equivalent to 4 spacesto

the right.

• EX:

firstif.py

v1=input("Enter the value of v1: ")

if(int(v1)==10):

print("the value of v1 is: ",v1)

print("in first if")

v2=input("Enter the value of v2: ")

if(int(v2)==100):

print("the value of v2 is: ",v2)

print("in second if")

Variables

•Container that stores values for accessing and changing.

•Is a way of pointing to a memory location.

•Other languages declare and bind a variable to a specific data

type.

•Python is dynamically typed, meaning no pre-declaration is

necessary.

>>>my_variable=10 --- indicates that my_variable is integer

>>>my_variable=‘hi hello’ --- indicates string

•You can change the value and datatype.

Numbers

Python has 4 built-in numeric data types:

1.integer(int)

2.floating point numbers(float)

3.complex numbers

4. long----deprecated from python3

Strings

•Is a sequence of unicode characters.

•Is a combination of letters, numbers and special symbols.

•Ex:s1=john123@gmail.com

•We enclose string in single and double quotations.

•If string enclosed in single quotes has single quote(‘) in it then

place a back slash before it

•Ex:

•S2=‘It doesn’t look good at all’

•SyntaxError: invalid syntax

•>>>s2=‘It doesn\’t lookgood at all’

mailto:john123@gmail.com

•Strings may be indexed or subscripted

•In Python, indexing starts from zero

>>>s=“Hello Python”

LISTS

Is similar to arrays in C

can store any type and any number of variables

Contains items separated by comma enclosed within square brackets[]

Ex:

>>>mylist=[‘abcd’,20.5,(2+3J),0.05]

Methods

1. insert(index,obj)

2.append()

3. Access

4.count(obj)

5. index(obj)

6. Update or Assign

7.Slicing

8.sort()

9. reverse()

10. extend(seq)

11. remove()

TUPLES

Another sequence data type similar to list is tuple

can store any type and any number of variables

Contains items separated by comma enclosed within parentheses()

Ex:

>>>mytple=(‘abcd’,123,20.5,(2+3J),0.05)

Difference between List and tuple:

Lists Tuples

Items are enclosed in

brackets[]

Items are enclosed in

parentheses()

Elements and size can be

changed

Elements and size cannot be

changed

•So, tuples are also called as read-only lists

Dictionary
Is a mutable and another container type that can store any number of

python objects enclosed in {}.

Is different from sequence type containers like lists and tuples in the

way the data is stored and accessed

Is a kind of hash table type

Consists of key-value pair and works like hash

Is like a list but instead of looking up an index to access values

you’ll be having a unique key which can be a number, string, tuple

Value can be anything

Colon separates a key from it’s value

Creating and assigning dictionaries

Creating dictionaries involves simply assigning a dictionary a variable

>>> dict1={} --- creating empty dictionary

>>> dict1['name']='john‘

>>> dict1['branch']='CSE'

>>> dict1['subject']='PYTHON'

>>> dict1

{'subject': 'PYTHON', 'branch': 'CSE', 'name': 'john'}

---- assigning variables to the dictionary

Types of Operators

Python language supports the following types of operators −

1. Arithmetic Operators

2. Assignment Operators

3. Comparison (Relational) Operators

4. Logical Operators

5. Bitwise Operators

6. Membership Operators

7. Identity Operators

Loops

•In general, statements are executed sequentially − The first

statement in a program is executed first, followed by the second,

and so on.

•There may be a situation when you need to execute a block of

code several number of times.

•Programming languages provide various control structures that

allow more complicated execution paths.

•A loop statement allows us to execute a statement or group of

statements multiple times. The following diagram illustrates a

loop statement −

while loop

Repeats a statement or group of statements while a

given condition is TRUE. It tests the condition

before executing the loop body.

for loop
Executes a sequence of statements multiple times

and abbreviates the code that manages the loop

variable.

nested loops You can use one or more loop inside any another

while, or for loop.

Python programming language provides the following types of

loops to handle looping requirements.

Decision Making

•Decision-making is the expectation of conditions occurring

during the execution of a program and specified actions taken

according to the conditions.

•Decision statements evaluate multiple expressions, which

produce True or False as the outcome.

•You need to determine which action to take and which

statements to execute if the outcome is True or False otherwise.

•Python programming language assumes any non-zero and non-null

values as True, and any zero or null values as False value.

•Python programming language provides the following types of

decision-making statements.

S.No. Statement & Description

if statements

An if statement consists of a boolean
expression followed by one or more
statements.

if...else statements

An if statement can be followed by an
optional else statement, which executes
when the boolean expression is FALSE.

nested if statements

You can use one if or else if statement
inside another if or else ifstatement(s).

Loop Control Statements

The Loop control statements change the execution from its normal

sequence.

When the execution leaves a scope, all automatic objects that were

created in that scope are destroyed.

Python supports the following control statements.

break statement

Terminates the loop statement and transfers execution to the

statement immediately following the loop.

continue statement

Causes the loop to skip the remainder of its body and immediately

retest its condition prior to reiterating.

pass statement

The pass statement in Python is used when a statement is required

syntactically but you do not want any command or code to

execute.

https://www.tutorialspoint.com/python3/python_break_statement.htm
https://www.tutorialspoint.com/python3/python_continue_statement.htm
https://www.tutorialspoint.com/python3/python_pass_statement.htm

A function is

• a block of organized, reusable code that is used to

perform a single, related action.

• Functions provide better modularity for your application

and a high degree of code reusing.

Declaration vs. Definition:

int fact(int); ---->Declaration

int fact(int n)

{

if(n==1)

return n

else

return(n*fact(n-1))

fact(5) ; ----> Calling

Definition

Difference between parameter and an argument:

Parameters comes as a part of function definition

Whereas arguments are part of function call

The arguments are the data we pass into the function’s

parameters

Parameters

def sumab(a,b):

return a+b

arguments

sumab(3,5)

Function Arguments

The following types of formal arguments

1. Required arguments

2. Keyword arguments

3. Default arguments

4. Variable-length arguments

The Anonymous Functions

not declared in the standard manner by using the def keyword.

the lambda keyword to create small anonymous functions.

•can take any number of arguments but return just one value

in the form of an expression.

•cannot be a direct call to print because lambda requires an

expression.

•have their own local namespace

•appears as a one-line version of a function, they are not

equivalent to inline statements in C or C++

Syntax

lambda [arg1 [,arg2,.....argn]]:expression

Example

Function definition is here

sum = lambda arg1, arg2: arg1 + arg2

Now you can call sum as a function

print ("Value of total : ", sum(10, 20))

print ("Value of total : ", sum(20, 20))

result −

Value of total : 30

Value of total : 40

Function vs. Procedure:

Functions concludes by sending back a return value to

the caller.

procedures are treated as special cases of functions which

do not return a value.

As python interpreter implicitly return a default value

None, So, in Python procedures are implied as functions

Scope of Variables

All variables in a program may not be accessible at all

locations in that program.

The scope of a variable determines the portion of the

program where you can access a particular identifier.

There are two basic scopes of variables in Python −

•Global variables

•Local variables

Module :

a module is a file consisting of Python code.

It can define functions, classes and variables.

can also include runnable code.

example of a simple module

sum.py −

def sumab():

a=int(input("Enter First Number: "))#20

b=int(input("Enter Second Number: "))#10

return a+b

The import Statement

The import has the following syntax −

import module1[, module2[,... moduleN]

When the interpreter encounters an import statement,

it imports the module

Built-in Functions

1. _ _import_ _()

2. dir()

3. globals() and locals()

4. reload()

Overview of OOP Terminology

Class − A user-defined prototype for an object that defines a

set of attributes called data members (class variables and

instance variables) and methods, accessed via dot notation.

Class variable − Defined within a class

Instance variable − A variable that is defined inside a

method and belongs only to the current instance of a class

Data member − A class variable or instance variable that

holds data associated with a class and its objects.

Function overloading − The assignment of more than one

behaviour to a particular function. The operation

performed varies by the types of arguments involved.

Inheritance − The transfer of the characteristics of a

class to other classes that are derived from it.

Instance − An individual object of a certain class.

Instantiation − The creation of an instance of a class.

Method − A special kind of function that is defined in a

class definition.

Operator overloading − Using same operator in different

ways

Like + for addition and concatenation

* for multiplication and repetition

Creating Classes

The name of the class immediately follows the

keyword class followed by a colon as follows −

class ClassName:

'Optional class documentation string'

class_suite

•The class_suite consists of all the component

statements defining class members, data attributes

and functions.

EXCEPTION HANDLING

Difference between Error and Exception

Error---

1) Syntax Error –errors with the construct of the software

Cannot be executed or compiled correctly

Repaired before execution

Domain Failures

2) logical error – Caused by lack of or invalid input

executing in the current flow is no longer possible

Range Failures

Exceptions:

System errors and hardware interruptions

Detecting and Handling done by Operating System

Detection and Handling Exceptions:

detected by incorporating them as part of a try statement

Any code suite of try statement will be monitored for exceptions

Two main forms of try statements:

try-except-- allows to detect and handle exceptions

try-finally– allows to detect and process exceptions

A try statement is either accompanied by one or more except

clauses or exactly one finally clause

Optional else for situations where code needs to run when no

exceptions are detected

1. try-except:

syntax:

try: #watch for exceptions here

try_suite

except Exception: #exception-handling code

except_suite

2. try statement with multiple excepts:

To handle different types of exceptions with the same try

Syntax:

try: #watch for exceptions here

try_suite

except Exception1: #exception-handling code

except_suite_for_Exception1

except Exception2: #exception-handling code

except_suite_for_Exception2

Assertions:

An assertion is a sanity-check that you can turn on or turn

off when you are testing the program.

diagnostic predicates must evaluate to Boolean True,

otherwise an exception is raised to indicate that the

expression is False

an assertion is like a raise-if statement

works similar to Macros in C

assert expression[,args]

Exception

StandardError SystemError

ArithmeticError AssertionError AttributeError EOFError EnvironmentError

FlotingPointError OverflowError ZeroDivisionError IOError OSError

ImportError KeyboardInterruptError LookupError MemoryError NameError

IndexError KeyError UnboundLocalError

RuntimeError SyntaxError TypeError ValueError

NoImplementedError IndentationError UnicodeError

